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SEPARATION SCIENCE AND TECHNOLOGY, 13(10), pp. 881-893, 1978 

Theory of Clarifier Operation. II. Hindered Settling of 
Flocculating Systems in Rectangular Clarifiers 

DAVID J. WILSON 
DEPARTMENTS OF CHEMISTRY AND ENVIRONMENTAL ENGINEERING 
VANDERBILT UNIVERSITY 
NASHVILLE, TENNESSEE 37235 

Abstract 

The operation of rectangular clarifiers is simulated by means of the con- 
tinuity equations. The model permits the examination of hindered settling of 
solids which are undergoing flocculation and floc disruption. The steady-state 
solution requires very modest amounts of computer time and also lends itself 
to the analysis of quiescent settling in jar tests. 

INTRODUCTION 

We recently examined the modeling of clarifier operation by use of the 
continuity equations for hindered settling of flocculating suspensions; 
the case of quiescent settling such as is used in jar tests was analyzed ( I ) .  
The relevant literature was reviewed in that paper, referred to henceforth 
as I. The use of the continuity equations, into which one inserts terms 
corresponding to the formation of composite particles by flocculation 
and terms corresponding to the disruption of composite particles by 
viscous drag forces, permits one to construct mathematical models of the 
various types of clarifiers which are quite realistic and which are easily 
within the capabilities of even rather modest electronic computers. 

One of the most commonly used types of clarifiers is the rectangular 
clarifier in which liquid is admitted at one end of a rectangular tank, 
slowly moves across the tank (during which process the solids settle out), 
and is discharged at the other end of the tank. Inlet structures may be 
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882 WILSON 

provided to reduce turbulence in the tank by breaking the flow of the 
entering liquid. Facilities for removal of the settled sludge are necessary, 
and discharge of clarified effluent may be via a weir of some sort. 

We present here a mathematical model for the description of the 
steady-state operation of rectangular clarifiers in the hindered settling 
regime with flocculating particles. 

ANALYSIS 

We assume for our model a collection of particles formed by floccula- 
tion from unit elementary particles, disrupted by viscous drag forces, 
moved in the horizontal ( x )  direction by the flow of liquid through the 
clarifier from left to right, and moved downward ( - y )  by the interplay 
between gravity and viscous drag. We include terms representing diffusive 
mixing in the x and y directions. The continuity equation for n-particles 
(consisting of n elementary particles) is 

n =  1,2, . . . ,  N 

where t = time 
cn = number density of n-particles at ( x ,  y,  t )  

u: = velocity in the laboratory frame of reference of an n-particle 
at (x ,  Y ,  t> 

D,, D, = effective diffusion constants 
c(x, Y, t )  = [ C i ,  Cz, . - - 7 CN(~, Y ,  t)l 

F,, = flocculation and disruption terms 
N = largest composite particle permitted 

As before ( I ) ,  we take the flocculation and floc disruption terms to be 
given by 

where h i j  = 0 if i # j ;  = 1 if i = j 
[n/2] = largest integer 1n/2 

uk = velocity of a k-particle relative to the surrounding liquid 
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THEORY OF CLARIFIER OPERATION. I I  a03 

r k  = radius of a k-particle, assumed spherical, = (3kV,/4~)”~ 
Vl = volume of an elementary particle 
vk = volume of k-particle, = kV, 

We calculate the v, as follows. We take Vand’s formula for the viscosity 
of a slurry (2) 

where C is the volume fraction of solids in the slurry at the point of 
interest, given by 

and ylo is the viscosity of the pure liquid. The density of the slurry is given 
by 

P s r  = PSC + P r U  - C )  (5) 

where p s  = density of solid 
p r  = liquid density 

We define A p  to be p s  - pyt, which yields 

AP = ( P s  - P W  - C )  (6) 
The y-velocity of a k-particle relative to the surrounding liquid is then 
given by 

obtained from Fair, Geyer, and Okun (3).  Here g is the gravitational 
constant. The y-velocity of a k-particle relative to the laboratory is given 
by (1) 

N 

v; = uk - vncnvn (8) 
n =  1 

We take the following expression for the rate constant for floc disruption: 

.#! “ /2 ] ! (N  - “/2])! 
” ! k;,j-,, = u n ! ( j  - n)! (9) 

where u is just a proportionality constant ( I ) ,  and [N/2] is the greatest 
integer less than or equal to N/2. 
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884 WILSON 

The strongly nonlinear character of Eq. (1) precludes its solution by 
analytical means ; we therefore represent the spatial dependence of the 
cn(x, y ,  t )  by means of a discrete mesh of points. We let 

~ ( n ,  P, 4, t> = cn[(P - +)AX, (4  - !I)AU, tl  (10) 

and approximate Eq. (1) as follows. 

ac 
,,h P, 4, t )  

1 
A x  = - [ - v , (n ,p ,  4, t>c(n,p,  4 ,  t>+ U h , P  - 194, t )&,P - 1 > 4 ,  t)l 

+ F M P ,  4, 0 1  (11) 

Solution of Eq. (1 1) with appropriate initial and boundary conditions 
and a substantial number of particle sizes represents a possible but rather 
formidable problem in terms of computer time. We therefore address 
ourselves to two simpler but still quite realistic variants: (a) the time- 
dependent problem for a nonflocculating monodisperse system, and (b) 
the steady-state problem for the polydisperse flocculating system. We 
also assume that ox is a constant-that we have plug flow across the clari- 
fier, and we drop the diffusive mixing terms. 

The equations for the time-dependent monodisperse system with the 
above constraints become 

1 + [ -U’(P,  4 + 1,  t>C(P, 4 + 1,2) + UYP,  4, t ) c (p ,  4 ,  01 
(12) 

with some obvious simplifications in notation. Along the top of the 
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THEORY OF CLARIFIER OPERATION. II 

clarifier q = Q, and we have 

dc 1 
- ( P ,  dt Q7 t )  = Z [ c ( P  - 1,  Q, t )  - c(PY Q, t)l + ~ [ u ' ( p ~  Q, t )c (p ,  Q, t ) ]  

885 

on noting that there 
bottom q = 1, and 

(13) 
is no flux into these cells from above. Along the 

(14) 
Along the left side of the clarifier p = 1, and 

1 + -[--u'(L q + 1, t M l ,  q + 1, 2) + U'O, 4, t>c(l, 4, t)l 
AY 

(1 5 )  
where co(q, t )  gives the influent concentration. At the top left corner, 
p = 1, q = Q, and 

dc 1 
%(I ,  Q, t )  = SPo(Q, t )  - 4, Q, t)l + ~ [ u ' ( 1 ,  Q, t ) c ( l ,  Q, t)l (16) 

This set of equations, Eqs. (12)-(16), we write in abbreviated notation 
as 

where 2(t) represents the set c(i,j, t) ,  for all i, j. We integrate Eq. (17) by 
means of a predictor-corrector method, using as our starting formulas: 
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886 WILSON 

Generally we use the algorithm 

The principal purpose of the computer program written to solve this 
system was to examine the approach of the clarifier to steady-state con- 
ditions after start-up. Several runs were made in which the concentrations 
of solids at 400 points in the clarifier were printed at 10-sec intervals 
(clarifier time) so that the time-dependence of the concentration profiles 
could be examined. One observes the solids front moving across the 
clarifier and falling from left to right as the particles settle; the time con- 
stant for the approach to steady-state conditions was about x,/v,, the 
time required for the water to transit the clarifier, as one would expect. 
The enormous quantity of data generated did not lend itself well to sum- 
mary presentation, so we calculated the ratio of effluent solids flux to 
influent solids flux, 

in which we assume that the effluent from the lowest compartment on the 
right side of the clarifier is discharged as sludge. 

FIG. 1.  Clarifier efficiency factor E ( f )  as a function of time after start-up. 
The system is monodisperse; qo = 0.01 P, p. = 1.25 g/cm3, p, = 1.00 g/cm3, 
rl = 0.01, X L  = 100 cm, y ,  = 50 cm, u, = 1.50 (upper curve) or 1.00 (lower 

curve) cm/sec, co = 0.01 Ar = 1 sec, n, = n, = 20. 
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THEORY OF CLARIFIER OPERATION. II 087 

The dependence of E(t)  on v,, the linear velocity of water through the 
clarifier, is shown in Fig. 1. The vertical bars show the time at which solids 
would reach the effluent if pure plug flow were operative. The duration 
of the time interval during which E(t )  increases from essentially zero to 
essentially its asymptotic value decreases as one increases the values of 
P and Q (decreasing the size of the compartmerts into which the clarifier 
is partitioned). We see the expected increase in clarifier efficiency as u, 
is decreased. Figure 2 exhibits the effect of particle density on clarifier 
efficiency, and shows very marked improvement in E(t )  as particle density 
increases, as one would expect. Each of these curves required a little less 
than 5 min of XDS Sigma 7 computer time. 

We next address ourselves to the time-independent, steady-state case. 
We take Eq. (11) as our starting point, drop the diffusive terms again, 
and assume that vx is constant. Solving for c(n, p ,  q)  then yields 

p = 2 , 3 ,  . . . ,  P 
q =  Q -  1 , Q - 2  , . . . ,  3,2 

When q = Q (along the upper boundary), 

FIG. 2. Clarifier efficiency factor as a function of time after start-up. Param- 
eters are as in Fig. 1 except that ux = lOOcm/sec for both curves, and p. = 

1.25 (upper curve) and 1.35 (lower curve) g/cm3. 
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888 WILSON 

When q = 1 (along the lower boundary), 

It is necessary to iterate Eqs. (23)-(25) a couple of times, since u’(n, p ,  q)  
and Fn, which appear on the right side of the equations, both depend on 
c(n ,p ,  q). Three iterations were sufficient in all of the cases we tested. 
Our boundary conditions are that no material enters through the top of 
the clarifier or leaves through the bottom, and that constant solids feed 
concentration (n particles per cm3) are maintained on the left side of the 
clarifier, 

where k was taken equal to 2. 
Our computer program for the steady-state case prints out the volume 

fraction of solids in each compartment into which the clarifier is par- 
titioned, again an embarrassingly large quantity of data even when the 
clarifier is partitioned into only 400 compartments. Again we calculate a 
clarifier efficiency factor, 

N O  N Q  

n = l  q = 2  n = l  q = 1  
E = c z: 4% p ,  q)V(n)l c c c(n, 1, q)V(n) (27) 

the ratio of the effluent solids volume fraction to the influent solids volume 
fraction. We again assume that the effluent from the bottom compartment 
on the right-hand end of the clarifier is discharged as sludge. A single run 
took approximately 10 sec of XDS Sigma 7 computer time when particles 
of five different sizes were allowed ; with nine different sizes of particles, 
about 25 sec were required. 

RES U LTS 

The dependence of clarifier efficiency on r l ,  the radius of the particles 
of minimum size, is given in Table 1. The results are certainly as one would 
expect-E decreases drastically with increasing r l .  They also demonstrate 
that, even though flocculation is permitted to occur in the system, the 
size of the “fines”-the smallest particles present-is very important in 
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THEORY OF CLARIFIER OPERATION. II 889 

determining clarifier performance ; the smaller the fines, the poorer the 
quality of the effluent. Qualitatively, this result is well-known to anyone 
familiar with the operation of clarifiers following biological waste treat- 
ment; the model permits us to make a more quantitative assessment of the 
effect in flocculating systems. In Table 1 and subsequently, TISC stands 
for total influent solids concentration, the volume fraction of total sus- 
pended solids in the influent. 

Table 2 shows the dependence of clarifier efficiency on the velocity of 
throughput, and clearly exhibits the very sharp increase in effluent solids 
which one expects when the flow rate through the clarifier is increased to 
too large a value. With solids having the characteristics simulated here, 
our simulated clarifier evidently operates at 95% efficiency at a linear 
flow rate of about 0.85 cm/sec. 

Solids density, p,, displays the anticipated strong influence on clarifier 
efficiency, as seen in Table 3. Changing the solids density from 1.050 to 

TABLE 1 

Dependence of Clarifier Efficiency Function E on Elementary Particle Radius 
r1' 

rl x lo2 (cm) TISC E 

1 1.185 x 0.5963 
2 9.48 x 10-4 0.0847 

4 7.58 x 10-3 1.987 x 
3 3.20 x 10-3 7.67 x 10-3 

I) Other system parameters are: q0 = 0.01 P, ps = 1.05 g/cm3, p, = 1.00 g/cm3, 
x l  = 100 cm, y l  = 50 cm, v, = 1.00 cm/sec, K = 0.10 sec- ', co = 10 cm-', 
n, = n, = 20, k = 2, N = 9. 

TABLE 2 

Dependence of Clarifier Efficiency Function on Horizontal Linear Flow 
Velocity v,' 

V ,  (cm/sec) E 

0.25 2.136 x 

0.75 3.776 x lo-' 
1.25 0.1351 
1.50 0.3069 

0.50 8.65 x 10-3 

Other system parameters are: vo = 0.01 P, ps = 1.05 g/cm3, pI = 1.00 g/cm3, 
ri = 0.02, xI  = 100 cm, y l  = 50 cm, K = 0.10 sec-', co = 10 ~ m - ~ ,  n, = ny = 
20, k = 2, N = 9, TISC = 0.948 X 
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890 WILSON 

1.025 g/cm3 results in a decrease in our clarifier’s efficiency from about 
92 to 73%. Biological flocs are only very slightly more dense than water, 
hence settle extremely slowly. If one could find conditions under which 
these flocs would attach to fine sand particles, one might be able to increase 
their effective density with quite beneficial results. 

The influent floc particle concentrations used in these simulations were 
calculated from Eq. (26), where k was set equal to 2 throughout. In Table 
4 we examine the dependence of clarifier efficiency on solids loading as 
controlled by the variation of co in Eq. (26). Increasing the solids con- 
centration favors efficient operation by speeding the formation of large, 
rapidly settling particles by flocculation, a second-order process. On the 
other hand, it hinders efficient operation by increasing the effective 
viscosity of the slurry (see Eq. 3 )  and by decreasing the density difference 
between the settling particles and the slurry (Eq. 6). For the conditions 
we have simulated here, it is evident that increased solids concentrations 
do enhance the rate of settling. 

TABLE 3 
Dependence of Clarifier Efficiency Function on Solids Density p: 

pS W m 3 )  E 

1.025 
1.05 
1.10 
1.25 

0.2703 
0.0847 
1.168 X lo-* 
1.178 X lo-’ 

a Other system parameters are: qo = 0.01 P, p I  = l.00g/cm3, r1 = 0.02, xI  = 

100 cm, yI  = 50 cm, v, = 1.00 cm/sec, IC = 0.10 sec-I, co = 10 ~ m - ~ ,  n, = n, = 
20, k = 2, N = 9, TISC = 0.948 X 

TABLE 4 
Dependence of Clarifier Efficiency Function on Solids Concentration’ 

co (cm-3) TISC E 

1 .o 
5.0 

10 
20 

9.48 x 10-5 
4.74 x 10-4 
9.48 x 10-4 
1.90 x 10-3 

0.1402 
0.1284 
0.1164 
0.0653 

Other system parameters are: qo = 0.01 P, p. = 1.05 g/cm3, pt = 1.00 g/cm3, 
rl = 0.02, x1 = 100 cm, y I  = 50 cm, vx = 1.00 cm/sec, K = sec-’, n, = 
n, = 20, k = 2, N = 5. 
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THEORY OF CLARIFIER OPERATION. II 891 

Table 5 shows the dependence of clarifier efficiency on the maximum 
number of elementary particles which are permitted to aggregate together 
to form a composite floc particle. The (hardly surprising) result is that the 
weighting of the size distribution toward the larger particles results in a 
substantial increase in clarifier efficiency. We note that with this model 
it becomes a very simple (and cheap) matter to examine in detail the 
effects of particle size distribution on the performance of a clarifier. The 
initial size distribution function we have chosen, can easily have the 
exponent of n varied as desired, or, by changing three cards in the program, 
another function could easily be substituted for the one which we have 
chosen more or less arbitrarily. One presumes that at higher values of the 
TISC the initial particle size distribution would become less influential, 
since the rate of coagulation of the particles, a second-order process, 
would be increased and the bulk of the settling would occur from a near- 
equilibrium distribution of particle sizes. 

Table 6 shows the effect of varying the floc disruption constants; K 
is the scale factor for these, indicated in Eq. (9). We see the expected 
deterioration in clarifier performance as the floc disruption rates are 
increased, but the effect is rather small. Increasing K to about 4sec-’ 
results in computational disaster, as the rates of break-up of the large 
particles become so large that we must choose values of Ax and Ay sub- 
stantially smaller than those used here (5 and 2.5 cm, respectively, in a 
clarifier 100 crn long by 50 cm deep) in order to avoid negative or wildly 
oscillating concentrations. Evidently clarifier efficiency is determined 
primarily by the concentrations of the smaller particles (1-, 2-, and 
perhaps 3-particles), and the concentrations of these are relatively little 
affected even when the rate of break-up of 9-particles to form 4- and 5- 

TABLE 5 
Dependence of Clarifier Efficiency Function on Maximum Aggregate Size, Nu 

N TISC x 105 E 

3.35 
6.14 
7.65 
8.69 
9.48 

0.2760 
0.1 750 
0.1402 
0.1228 
0.1121 

a Other system parameters are: qo = 0.01 P, p. = 1.05 g/cm”, pL = 1.00 g/cm3, 
sec-’, co = 1.0 r1 = 0.02, xl  = 100 cm, y l  = 50 cm, v, = 1.00 cm/sec, K = 

~ m - ~ ,  n, = n,. = 20, k = 2. 
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891 WILSON 

TABLE 6 

Dependence of Clarifier Efficiency Function on the Floc Disruption Scale 
Factor rc" 

K (sec-1) E x lo2 

10-3 

0.10 
0.30 
0.60 
2.0 
4.0 

8.41 
8.47 
8.47 
8.47 
8.41 
8.61 
8.85 

Other system parameters are: ?lo = 0.01 P, ps = 1.05 g/cm3, pL = 1.00 g/cm3, 
rl = 0.02, xl  = 100 cm, y, = 50 cm, v, = 1.00 cmisec, co = 10 ~ m - ~ ,  n, = ny = 

20, k = 2, N = 9, TISC = 9.48 x 

particles is large enough to cause computational problems. This may be 
an artifact resulting from the functional form of our floc disruption 
constants. These are such that a large n-particle is much more likely to be 
broken up into two roughly equally sized pieces than into an (n - 1)- 
particle and a 1-particle, and we do not know if this is in fact realistic. 

There are a couple of other criticisms which can be made about the 
model. First, as the particles fall they are dissipating power in the sus- 
pension, which must result in small-scale turbulences. These turbulences 
should result in an increased frequency of particle-particle collisions above 
the estimate given by the first two sums in Eq. (2), which assume that the 
only mechanism leading to collisions is the differential rate of fall of the 
particles in a completely quiescent solution. This effect should increase 
with increasing solids concentrations as long as the viscosity and slurry 
density are not strongly affected. 

A second criticism is that we have failed to include the diffusive terms 
present in Eqs. (1) and (11). Inclusion of these explicitly makes the com- 
putations much more time-consuming, necessitating the use of several 
iterations over the entire mesh of points. Also, the diffusive terms can be 
taken into account in a more or less empirical way by adjusting the spacing 
of the points in the mesh covering the clarifier-the values of Ax and Ay. 
Since we have no good way of estimating the diffusion constants D, and 
D,, we did not feel that additional expense was warranted. 

We note that this program may be used to examine quiescent settling 
such as occurs in jar tests simply by making the correspondence x/vx= t. 
In this way one can use the results of jar tests to obtain a set of parameters 
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THEORY OF CLARIFIER OPERATION. II 893 

which adequately characterize the influent to be clarified, and then use 
these parameters and information on maximum flow rates and desired 
effluent quality to design a clarifier meeting the desired specifications by 
means of the computer simulator. 
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