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Theory of Clarifier Operation. Il. Hindered Settling of
Flocculating Systems in Rectangular Clarifiers

DAVID J. WILSON

DEPARTMENTS OF CHEMISTRY AND ENVIRONMENTAL ENGINEERING
VANDERBILT UNIVERSITY
NASHVILLE, TENNESSEE 37235

Abstract

The operation of rectangular clarifiers is simulated by means of the con-
tinuity equations. The model permits the examination of hindered settling of
solids which are undergoing flocculation and floc disruption. The steady-state
solution requires very modest amounts of computer time and also lends itself
to the analysis of quiescent settling in jar tests.

INTRODUCTION

We recently examined the modeling of clarifier operation by use of the
continuity equations for hindered settling of flocculating suspensions;
the case of quiescent settling such as is used in jar tests was analyzed (/).
The relevant literature was reviewed in that paper, referred to henceforth
as I. The use of the continuity equations, into which one inserts terms
corresponding to the formation of composite particles by flocculation
and terms corresponding to the disruption of composite particles by
viscous drag forces, permits one to construct mathematical models of the
various types of clarifiers which are quite realistic and which are easily
within the capabilities of even rather modest electronic computers.

One of the most commonly used types of clarifiers is the rectangular
clarifier in which liquid is admitted at one end of a rectangular tank,
slowly moves across the tank (during which process the solids settle out),
and is discharged at the other end of the tank. Inlet structures may be
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provided to reduce turbulence in the tank by breaking the flow of the
entering liquid. Facilities for removal of the settled sludge are necessary,
and discharge of clarified effluent may be via a weir of some sort.

We present here a mathematical model for the description of the
steady-state operation of rectangular clarifiers in the hindered settling
regime with flocculating particles.

ANALYSIS

We assume for our model a collection of particles formed by floccula-
tion from unit elementary particles, disrupted by viscous drag forces,
moved in the horizontal (x) direction by the flow of liquid through the
clarifier from left to right, and moved downward (—y) by the interplay
between gravity and viscous drag. We include terms representing diffusive
mixing in the x and y directions. The continunity equation for n-particles
(consisting of n elementary particles) is

de, Lo de) B,
_éT(Xs Y, t) = _V'(Uncn) + a—x<Dxa) + ay<Dy ay>+Fn[c(x’ Vs t)]’
=12...,N (M

where ¢t = time
¢, = number density of n-particles at (x, y, t)
v, = velocity in the laboratory frame of reference of an n-particle
at (x, y, t)
D,, D, = effective diffusion constants

e{x, v, ) = [c1,cp, .. o5 X, ¥, 8)]
F, = flocculation and disruption terms
N = largest composite particle permitted

As before (1), we take the flocculation and floc disruption terms to be
given by

(/2] N—n
Fy= Y cjCujlv; = vpjln(r; + ru-)® = Zl cicalv; = valm(r; + r,)?
=i I=
N ) [n/21
+ Y Kol + 0y n) = X ki )]
j=n+1 j=1

where §;; = 0if i # j; = 1ifi=
[#/2] = largest integer <n/2
v, = velocity of a k-particle relative to the surrounding liquid
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r, = radius of a k-particle, assumed spherical, = (3k¥,/4n)'/3
V, = volume of an elementary particle
V), = volume of k-particle, = £V,

We calculate the v, as follows. We take Vand’s formula for the viscosity
of a slurry (2)

2.5C + 2.7C*
] ®

1= "o exp[ 1 = 0.609C

where C is the volume fraction of solids in the slurry at the point of
interest, given by

N
C = Zl e(%, 3, )V, @)
and 7, is the viscosity of the pure liquid. The density of the slurry is given
by
P = psC + p(l — C) &)

where p, = density of solid
p; = liquid density

We define Ap to be p, — p,;, which yields

Ap = (p, — p)(1 — C) ®)
The y-velocity of a k-particle relative to the surrounding liquid is then
given by

29(Ap)rk? 1 —t
Up = Uy = "g(_glr;‘)_[l + Z(Pu"k“kﬂﬂ)l/z + 0.34pgr, kuk] 7

obtained from Fair, Geyer, and Okun (3). Here g is the gravitational
constant. The y-velocity of a k-particle relative to the laboratory is given

by (1)
N
Uy = O — ), UaCpVy ®
n=1

We take the following expression for the rate constant for floc disruption:

i _ Jj! [N/2]MN — [N/2D!
ryon = i — ! NN! )]

where « is just a proportionality constant (I), and [N/2] is the greatest
integer less than or equal to N/2.



14: 04 25 January 2011

Downl oaded At:

884 WILSON

The strongly nonlinear character of Eq. (1) precludes its solution by
analytical means; we therefore represent the spatial dependence of the
¢,(x, y, t) by means of a discrete mesh of points. We let

c(n,p,q,t) = c,[(p — %)Ax: (g - DAy, t] (10)

and approximate Eq. (1) as follows.
dc
5P 4 1)
1
= A_x[—vx(n’ P, 9q, t)c(n,p, q, t)+ vx(n’P - l, q, t)c(n’p - 1’ q, t)]
1 , ,
+ A—y[—vy(n, p,q+ L, t)yeln, p,g + 1,¢) + vy(n, p, q, t)e(n, p, g, t)]
D,
A‘_xz[c(n,P + 1’ q, t) - 2C(n’ D q t) + C(n!p - 19 q, t)]

D
+ Kyzz'[c(nap9 q + 13 t) - 2C(n,P, q, t) + C(",P, q— 13 t)]

+ Fle(p, ¢, 1)] (1D

Solution of Eq. (11) with appropriate initial and boundary conditions
and a substantial number of particle sizes represents a possible but rather
formidable problem in terms of computer time. We therefore address
ourselves to two simpler but still quite realistic variants: (a) the time-
dependent problem for a nonflocculating monodisperse system, and (b)
the steady-state problem for the polydisperse flocculating system. We
also assume that v, is a constant—that we have plug flow across the clari-
fier, and we drop the diffusive mixing terms.

The equations for the time-dependent monodisperse system with the
above constraints become

dc Uy
2‘1?(17, q, t) = A—x[c(p - 19 q, t) - C(P’ q, t)]

1
+ A_y[_U'(P, q + 13 t)C(p, q+ 1$ t) + Ul(p, 9, t)C(p, q, t)]
(12)

with some obvious simplifications in notation. Along the top of the
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clarifier ¢ = @, and we have

d 1
7 (500 =52lep = 1,0.1) = o5, 0.0] + [P, 0, )e(p, @, 1)
(3)

on noting that there is no flux into these cells from above. Along the

bottom ¢ = 1, and

e ol 1y =2z 1,1, 1) L O]+ o= [=v'(p, 2, Delp, 2, 1

dt (pa » )_' Ax[c(p - L L - C(P, ’ )] Ay[_v(p’ » )C(p’ s )]
(14)

Along the left side of the clarifier p = 1, and

dc Ve o

t-it-(l’ q, t) - E[C (q’ t) - C(l, q, t)]

1 .
+ K}-}[—u'(l, g+ Lt(l,g+ 1,8 + v'(1, g, )c(l, g, )]
15)

where ¢°(g, ¢) gives the influent concentration. At the top left corner,
p=1,4=0,and

d 1
(> Q0 = Z51e%Q. 1) — (1, @, 01+ S [v(L, @, De(t, Q. 1) (16)

This set of equations, Eqgs. (12)-(16), we write in abbreviated notation
as

0 =1,
G0 =fdeol PTT0 (17)

where &(¢) represents the set c(Z, j, ¢), for all i, j. We integrate Eq. (17) by
means of a predictor-corrector method, using as our starting formulas:

predictor

c*(p, g, At) = c(p, g, 0) + Atf,[¢(0)] (18)

corrector

«(p, g, At) = ¢(p, 4, 0) + %E {fod 6O +/ e (An]} 19)
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Generally we use the algorithm

c*(p, g, t + At) = c(p, g, t — At) + 2Atf, [e(1)] (20)
c(p.q,t + At) = c(p, g, 1) + %—t{qu[é(f)] + fple(e + AL Q21

The principal purpose of the computer program written to solve this
system was to examine the approach of the clarifier to steady-state con-
ditions after start-up. Several runs were made in which the concentrations
of solids at 400 points in the clarifier were printed at 10-sec intervals
(clarifier time) so that the time-dependence of the concentration profiles
could be examined. One observes the solids front moving across the
clarifier and falling from left to right as the particles settle; the time con-
stant for the approach to steady-state conditions was about x;/v,, the
time required for the water to transit the clarifier, as one would expect.
The enormous quantity of data generated did not lend itself well to sum-
mary presentation, so we calculated the ratio of effluent solids flux to
influent solids flux,

Q

Q
E@t)= ), o(P,q1) Zl e(1, g, 1) 2)
=

q=2

in which we assume that the effluent from the lowest compartment on the
right side of the clarifier is discharged as sludge.

E(1)

A 1 ]
0 50 100 150
t{sec)

Fic. 1. Clarifier efficiency factor E(¢) as a function of time after start-up.

The system is monodisperse; 7o = 0.01 P, p, = 1.25 g/cm?, p, = 1.00 g/cm?,

r. = 0.01, x, = 100 cm, y; = 50 cm, v, = 1.50 (upper curve) or 1.00 (lower
curve) cm/sec, ¢o = 0.01 cm~3, Ar = 1 sec, n, = n, = 20.
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The dependence of E(f) on v,, the linear velocity of water through the
clarifier, is shown in Fig. 1. The vertical bars show the time at which solids
would reach the effluent if pure plug flow were operative. The duration
of the time interval during which E(t) increases from essentially zero to
essentially its asymptotic value decreases as one increases the values of
P and Q (decreasing the size of the compartments into which the clarifier
is partitioned). We see the expected increase in clarifier efficiency as v,
is decreased. Figure 2 exhibits the effect of particle density on clarifier
efficiency, and shows very marked improvement in E(¢) as particle density
increases, as one would expect. Each of these curves required a little less
than 5 min of XDS Sigma 7 computer time.

We next address ourselves to the time-independent, steady-state case.
We take Eq. (11) as our starting point, drop the diffusive terms again,
and assume that v, is constant. Solving for ¢(n, p, ¢) then yields

Uy v(n,p, g+ e, p, g + 1)
c(n, P> q) = Ec(n,P - 13 Q) - Ay
v, _v@®,p,9q)
pP=23,...,P

g=0-1,0-2,...,3,2 (23)

When g = Q (along the upper boundary),

osr
E)

04r

0 50 100 150
t(sec)

FiG. 2. Clarifier efficiency factor as a function of time after start-up., Param-
eters are as in Fig. 1 except that v, = 100 cm/sec for both curves, and p, =
1.25 (upper curve) and 1.35 (lower curve) g/cm3.
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v, V(np, Q)

0.0 = {2z ctrp ~ 1.0 + Fito, o [ 22 - 22 9] g
When ¢ = 1 (along the lower boundary),

m%n=mJ—uH{1%%9m%m+ﬂmm%?

(25)

It is necessary to iterate Eqs. (23)-(25) a couple of times, since v'(n, p, q)
and F,, which appear on the right side of the equations, both depend on
c(n, p, q). Three iterations were sufficient in all of the cases we tested.
Our boundary conditions are that no material enters through the top of
the clarifier or leaves through the bottom, and that constant solids feed
concentration (n particles per cm?) are maintained on the left side of the
clarifier,

e, 1,9) = con™* (26)

where k& was taken equal to 2.

Our computer program for the steady-state case prints out the volume
fraction of solids in each compartment into which the clarifier is par-
titioned, again an embarrassingly large quantity of data even when the
clarifier is partitioned into only 400 compartments. Again we calculate a
clarifier efficiency factor,

N o0 N @
E= Zl 22 C(n’ P, q)V(n)/ Zl Zl C(l’l, | q)V(n) (27)
n=1gqg= n=1g=
the ratio of the effluent solids volume fraction to the influent solids volume
fraction. We again assume that the effluent from the bottom compartment
on the right-hand end of the clarifier is discharged as sludge. A single run
took approximately 10 sec of XDS Sigma 7 computer time when particles
of five different sizes were allowed; with nine different sizes of particles,
about 25 sec were required.

RESULTS

The dependence of clarifier efficiency on r,, the radius of the particles
of minimum size, is given in Table 1. The results are certainly as one would
expect—FE decreases drastically with increasing ry. They also demonstrate
that, even though flocculation is permitted to occur in the system, the
size of the “fines”—the smallest particles present—is very important in
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determining clarifier performance; the smaller the fines, the poorer the
quality of the effluent. Qualitatively, this result is well-known to anyone
familiar with the operation of clarifiers following biological waste treat-
ment; the model permits us to make a more quantitative assessment of the
effect in flocculating systems. In Table 1 and subsequently, TISC stands
for total influent solids concentration, the volume fraction of total sus-
pended solids in the influent.

Table 2 shows the dependence of clarifier efficiency on the velocity of
throughput, and clearly exhibits the very sharp increase in effluent solids
which one expects when the flow rate through the clarifier is increased to
too large a value. With solids having the characteristics simulated here,
our simulated clarifier evidently operates at 959 efficiency at a linear
flow rate of about 0.85 cm/sec.

Solids density, p,, displays the anticipated strong influence on clarifier
efficiency, as seen in Table 3. Changing the solids density from 1.030 to

TABLE 1

Dependence of Clarifier Efficiency Function E on Elementary Particle Radius
rl"

ri x 10? (cm) TISC E
1 1.185 x 10-4 0.5963
2 948 x 10-* 0.0847
3 320 x 103 7.67 % 103
4 758 x 103 1.987 x 10-*

¢ Other system parameters are: 7, = 0.01 P, p, = 1.05 gfcm?3, p, = 1.00 g/cm?,
x; = 100cm, y, = 50cm, v, = 1.00cm/sec, & = 0.10sec™!, ¢p = 10em™3,
Hy=n, =20k =2,N=209,

TABLE 2

Dependence of Clarifier Efficiency Function on Horizontal Linear Flow
Velocity v,*

v, (cm/sec) E
0.25 2,136 x 10-3
0.50 8.65 x 10°3
0.75 3.776 x 102
1.25 0.1351
1.50 0.3069

@ Other system parameters are: #o = 0.01 P, p, = 1.05 g/em®, p, = 1.00 g/cm?,
ri = 0.02, x; = 100cm, y; = 50cm, ¥ = 0.10sec™*, ¢o = 10ecm~3, n, = n, =
20,k =2, N=9, TISC = 0.948 x 10-3,
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1.025 g/cm?® results in a decrease in our clarifier’s efficiency from about
92 to 73% . Biological flocs are only very slightly more dense than water,
hence settle extremely slowly. If one could find conditions under which
these flocs would attach to fine sand particles, one might be able to increase
their effective density with quite beneficial results.

The influent floc particle concentrations used in these simulations were
calculated from Eq. (26), where k was set equal to 2 throughout. In Table
4 we examine the dependence of clarifier efficiency on solids loading as
controlled by the variation of ¢, in Eq. (26). Increasing the solids con-
centration favors efficient operation by speeding the formation of large,
rapidly settling particles by flocculation, a second-order process. On the
other hand, it hinders efficient operation by increasing the effective
viscosity of the slurry (see Eq. 3) and by decreasing the density difference
between the settling particles and the slurry (Eq. 6). For the conditions
we have simulated here, it is evident that increased solids concentrations
do enhance the rate of settling.

TABLE 3

Dependence of Clarifier Efficiency Function on Solids Density p,°

ps (g/cm®) E
1.025 0.2703
1.05 0.0847
1.10 1.168 x 102
1.25 1.178 x 10~

¢ Other system parameters are: 70 = 0.01 P, p; = 1.00 g/cm?, ry = 0.02, x;, =
100 cm, y; = 50 cm, v, = 1.00 cmy/sec, k¥ = 0.10sec™ %, ¢o = 10em ™3, n, = n, =
20,k =2, N=9, TISC = 0.948 x 10~3.

TABLE 4

Dependence of Clarifier Efficiency Function on Solids Concentration®

¢ (em™?) TISC E
1.0 9.48 x 10-3 0.1402
5.0 4.74 x 104 0.1284
10 9.48 x 10-4 0.1164

20 1.90 x 10-3 0.0653

@ Other system parameters are: 7o = 0.01 P, p, = 1.05 g/fcm3, p; = 1.00 g/cm?,
1 =002, x, =100cm, y; = 50cm, v, = 1.00 cm/sec, ¥k = 10" 3 sec™?, n, =
ny =20,k =2, N=S5.
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Table 5 shows the dependence of clarifier efficiency on the maximum
number of elementary particles which are permitted to aggregate together
to form a composite floc particle. The (hardly surprising) result is that the
weighting of the size distribution toward the larger particles results in a
substantial increase in clarifier efficiency. We note that with this model
it becomes a very simple (and cheap) matter to examine in detail the
effects of particle size distribution on the performance of a clarifier. The
initial size distribution function we have chosen, con“z, can easily have the
exponent of n varied as desired, or, by changing three cards in the program,
another function could easily be substituted for the one which we have
chosen more or less arbitrarily. One presumes that at higher values of the
TISC the initial particle size distribution would become less influential,
since the rate of coagulation of the particles, a second-order process,
would be increased and the bulk of the settling would occur from a near-
equilibrium distribution of particle sizes.

Table 6 shows the effect of varying the floc disruption constants; x
is the scale factor for these, indicated in Eq. (9). We see the expected
deterioration in clarifier performance as the floc disruption rates are
increased, but the effect is rather small. Increasing x to about 4 sec™!
results in computational disaster, as the rates of break-up of the large
particles become so large that we must choose values of Ax and Ay sub-
stantially smaller than those used here (5 and 2.5 cm, respectively, in a
clarifier 100 cm long by 50 cm deep) in order to avoid negative or wildly
oscillating concentrations. Evidently clarifier efficiency is determined
primarily by the concentrations of the smaller particles (1-, 2-, and
perhaps 3-particles), and the concentrations of these are relatively little
affected even when the rate of break-up of 9-particles to form 4- and 5-

TABLE 5
Dependence of Clarifier Efficiency Function on Maximum Aggregate Size, N°

N TISC x 10° E

1 3.35 0.2760
3 6.14 0.1750
5 7.65 0.1402
7 8.69 0.1228
9 9.48 0.1121

¢ Other system parameters are: 7o = 0.01 P, p, = 1.05 g/fem®, p, = 1.00 g/cm?,
r1 = 0.02, x; = 100 cm, y; = 50 cm, v, = 1.00 cm/sec, k = 1073 sec™1, ¢ = 1.0
cm~ 3, n, =n, =20,k =2,
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TABLE 6
Dependence of Clarifier Efficiency Function on the Floc Disruption Scale
Factor «*

K (sec™Y) E x 10?
10-3 8.47
10-2 8.47
0.10 8.47
0.30 8.47
0.60 8.47
2.0 8.61
4.0 8.85

¢ Other system parameters are: 7o = 0.01 P, p; = 1.05 g/cm?, p, = 1.00 g/cm?,
ry = 0.02, x;, = 100 cm, y, = 50 cm, v, = 1.00 cm/sec, ¢p = 10cm =3, 1, = n, =
20,k =2, N=9, TISC = 9.48 x 10~4.

particles is large enough to cause computational problems. This may be
an artifact resulting from the functional form of our floc disruption
constants, These are such that a large n-particle is much more likely to be
broken up into two roughly equally sized pieces than into an (n — 1)-
particle and a I-particle, and we do not know if this is in fact realistic.

There are a couple of other criticisms which can be made about the
model. First, as the particles fall they are dissipating power in the sus-
pension, which must result in small-scale turbulences. These turbulences
should result in an increased frequency of particle-particle collisions above
the estimate given by the first two sums in Eq. (2), which assume that the
only mechanism leading to collisions is the differential rate of fall of the
particles in a completely quiescent solution. This effect should increase
with increasing solids concentrations as long as the viscosity and slurry
density are not strongly affected.

A second criticism is that we have failed to include the diffusive terms
present in Eqgs. (1) and (11). Inclusion of these explicitly makes the com-
putations much more time-consuming, necessitating the use of several
iterations over the entire mesh of points. Also, the diffusive terms can be
taken into account in a more or less empirical way by adjusting the spacing
of the points in the mesh covering the clarifier—the values of Ax and Ay.
Since we have no good way of estimating the diffusion constants D, and
D,, we did not feel that additional expense was warranted.

We note that this program may be used to examine quiescent settling
such as occurs in jar tests simply by making the correspondence x/v,.=1.
In this way one can use the results of jar tests to obtain a set of parameters
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which adequately characterize the influent to be clarified, and then use
these parameters and information on maximum flow rates and desired
effluent quality to design a clarifier meeting the desired specifications by
means of the computer simulator.
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